

Defects in spin chains:

a virtual molecular magnet with quantum coherence properties.

Sylvain Bertaina

JAM2

Quantum Information – Quantum coherence

Quantum memory

Classical Algorithm

Euclide $\sim 300 \text{ BC}$: GCD calculation

Quantum algorithm

Examples of qubits

Superconducting flux qubit

Chiorescu *et al.* Science **299**, 1869 (2003)

Quantronium

Bouchiat, CEA Patent

Technology approaches to Quantum Computing

Non conventional electron spin qubits

Qubits multiphotons Bertaina *et al.* PRL **102** 050501(2009) PRB **84** 114433 (2011), PRB **92** 024498 (2015)

Spin Orbit Qubit of Rare Earth

Bertaina *et al.* Nature Nano **2** 39 (2007), PRL **103** 226402 (2009), LeDantec *et al* Sci Adv (2022)

Molecular Magnets : V15 Bertaina *et al.* Nature **453**-203(2008), PRL **109** 050401 (2012)

Examples of electron spin qubits – State of the art

NV center in diamond

Quantum sensing

Quantum memory

Silicon

Motivations

Electron Spin Resonance

CW ESR : Frequency fixed – Magnetic field swept

Relaxation time << experiment time: Transient regime or coherent

11)

0)

X

Pulsed ESR: Frequency fixed Magnetic field fixed Recorded in time

Relaxation time >> experiment time: Steady state regime or incoherent

J. R. Johansson, et al. QuTiP 2: Comput. Phys. Commun. 184, 1234–1240 (2013).

Choice of the frame

DE MOTIB. STELLÆ MARTIS

1 Giellerie frystie febriere renobeles 2 Sahirinen 1222 anne renobeles 2 Sahirinen 222 anora renobeles 2 Jamis XII anora renobeles 2 Herris a des by 3 Herris a des by

Copernic (1530) De Revolutionibus orbium coelestium

Brahe – Kepler (1609) Astromia nova

Rotating frame transformation

 $U = \exp(i2\pi f t S z)$

 $\hat{H} = \gamma H_0 Sz + 2hSx\cos(2\pi ft)$ $\hat{H}rot = \Delta Sz + h(1 + \exp(i4\pi ft))Sx$ $\Delta = \gamma H_0 - f$ Time dependant Time independant 15 $m_s = + 1/2$ 10 Energy (MHz) 5 Energy $\Delta E = E_{+1/2} - E_{-1/2}$ 0 --5 [/] $m_s = -1/2$ -10 $B_0 = 0$ $B_0 \neq 0$ Magnetic Field -15

Right unitary transformation \rightarrow problem solved

JAM2

-1.0

-0.5

0.0

Detuning (mT)

0.5

1.0

Sources of decoherence

DIKAROV PR Applied 6, 044001 (2016)

Dipole-dipole interaction

Too many spins and too close \rightarrow increase the relaxation

Solution: separate them by magnetic dilution (doping material, frozen solution)

(Super)hyperfine interaction

The nuclear spins surrounding the electron spin perturb it

Solution: find systems with few nuclear spins or far from the electron spin / Isotopic enrichment

Effect of temperature : phonon interaction

Temperature too high increases the relaxation

Solution: decrease the temperature

Time to play

Sources of relaxations

How to increase the coherence regime time ?

- Dipole-dipole interaction \rightarrow magnetic dilution
- Nuclear spin bath \rightarrow isotopic enrichment
- Spin-phonon interaction \rightarrow low temperature

Change the paradigm \rightarrow use strong correlation

Strongly Correlated Magnets

Diluted magnetism :

1D correlation No order Susceptibility of oxygen: P. Curie 1895 (Thesis) 2 -1

FIG. 1. Molar magnetic susceptibilities and reciprocal susceptibilities of $Cu(NH_3)_4SO_4 \cdot H_2O$ parallel to the *a*, *b*, and *c* axis of the crystal in the range of liquid helium and liquid hydrogen temperatures.

MAGNÉTISME. — Le point de transition λ de la susceptibilité magnétique du protoxyde de manganèse MnO. Note (') de MM. HENRI BIZETTE, CHARLES F. SQUIRE et BELLING TSAÏ, transmise par M. Aimé Cotton.

20

Susceptibility of MnO: Bizette 1938 (CR Acc. Sci)

1 line – 4 independent information

- $\chi_s = \int I(H) dH$ Susceptibility Kramer Kronig relation.
- Γ Linewidth : Dynamic properties
- *H*⁰ Resonance field : Local properties (crystal field)

Asymmetry : Dispersion signal - conductivity

$$I(H) = \frac{\Gamma}{(H - H_0)^2 + \Gamma^2}$$

ESR spectrometer – the original one

1944 – Zavoiski (Kazan State University)

23

© S. Bertaina

Electron Paramagnetic Resonance: experiment

IM2NP, Marseille (France)

- Bruker
- X Band 10GHz

High frequency

NHMFL, Tallahassee (USA)

- Quasi-optical superheterodyn
- 120 GHz, 240GHz et 336 GHz
- Champ magnétique: -12.5T à 12.5T

Inhomogeneous line – in the rotating frame

JAM2

Spin - echo

$$\frac{\pi}{2}$$
 - free evolution $-\pi$ - free evolution.

JAM2

Hahn echo sequence – Hard pulses

JAM2

Hahn echo sequence – Soft pulses

Presentation : organic spin chains

(TMTTF)₂XF₆ X=As,P,Sb

o(DMTTF)₂X X=Cl,Br,I

Presentation : organic spin chains

ESR of (TMTTF)₂X – already done ?

M. Dumm et al. Phys. Rev. B 61, 511 (2000).

150

The chain

CW - ESR

Properties of this new ESR line

1.5 f=9.7GHz T=15K Main line Sharp line c^* -40 -20 0 20 40 60Angle θ (deg)

Sharp and Main lines feel the same local field : the "impurity" is related to the chain

The dynamics of the chain and the "impurity" are different.

Susceptibility

Conclusion: the defect is inside the spin chain

P. Foury-Leylekian, et al. Phys. Rev. B. 84, 195134 (2011).

J. Zeisner, et al. Phys. Rev. B. 100, 224414 (2019).

Break the perfection : cut the chain

End chain in uniform Heisenberg chain

Eggert, Affleck Physical Review Letters 75, 934–937 (1995).

End chain and stacking fault in alternated Heisenberg chain

Nishino et al, Physical Review B 62, nº 14 (2000) 9463-9471.

Impurity in a spin chain

Virtual Molecular Magnet

Soliton in CuGeO₃

Rabi oscillations of the pinned soliton

Low damping \rightarrow long coherence

JAM2

Low Temperature Behavior

X =	Cl	Br	1	NO ₂	NO ₃
SQUID	25 10 ⁻⁴	37 10 ⁻⁴	14 10 ⁻⁴	37 10 ⁻⁴	66 10 ⁻⁴
EPR	$5.6 \ 10^{-4}$	6.6 10 ⁻⁴	4 10 ⁻⁴	7.9 10 ⁻⁴	$0.12 \ 10^{-4}$

Low Temperature Behavior

H (θ) = $H_{main}(\theta)$ + d(3 $cos^2 \theta - 1$)

Satellites lines comes from the chains

JAM2

Rabi oscillations

ר 15.0

-1.0

$$\boldsymbol{\nu}_{R}^{1} = \sqrt{S(S+1) - m_{s}(m_{s}+1)} \, \boldsymbol{\nu}_{R}^{1/2}$$

Central line : $S = \frac{1}{2}$ dynamics Satellite lines : S = 1 dynamics

Non Curie of the SCD

$$\chi(T) = \frac{3}{8} \frac{(1-n)}{T} + n \frac{1}{2T(1+\frac{1}{3}\exp\left(\frac{\Delta_s}{T}\right))}$$

CI : $\Delta_s = 16 K$, n= 0.44 Br : $\Delta_s = 21 K$, n= 0.56

Pb: Concentration of defects ~10⁻⁴ \rightarrow pairs/singles ~ 10⁻⁴ in a 3D crystal

B. Bleaney and K. D. Bowers, Proc. R. Soc. Lond. Ser. 964 Math. Phys. Sci. 214, 451 (1952) L.Soriano & al., Phys. Rev. B 105, 064434 (2022)

Pairs of solitons

Spin Relaxation

Spin Relaxation

Cl : $\Delta_0 = 150 K$ **Br** : $\Delta_0 = 180 K$

Quantum communication ?

Conclusion

- New mechanism of coherence protected by quantum fluctuation
- 2 levels system made by hundreds of spins
- Use the chain as quantum communication wire ?

Acknowledgments

Institut of Physics

NHMFL

ANR DySCORDE

French EPR federation (INFRANALYTICS – FR2054)

- L. Soriano (IM2NP)
- C.E Dutoit (IM2NP)
- O. Pilone (IM2NP)
- A. Savoyant (IM2NP)
- M. Fourmigué (ISCR)
- O. Jeannin (ISCR)
- H. DeRaedt (U. Groningen)

JAM2

• S. Miyashita (U. Tokyo)

- M. Orio (ISM2)
- H. Vezin (LASIRE)
- M. Dressel (U. Stuttgart)
- H. VanTol (NHMFL)