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⟨ÔΨ( ⃗θ )⟩ = ⟨Ψ( ⃗θ ) | Ô |Ψ( ⃗θ )⟩
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Û( ⃗θ )

|Ψ( ⃗θ )⟩ = Û( ⃗θ ) |HF⟩
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|Ψ( ⃗θ )⟩ = Û( ⃗θ ) |HF⟩

II) From quantum computing to chemistry
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|Ψ( ⃗θ )⟩ = Û( ⃗θ ) |HF⟩

|1⟩
|0⟩
|1⟩
|0⟩
|1⟩
|0⟩

|1⟩
|0⟩

Energy  
measure

E( ⃗θ )

II) From quantum computing to chemistry



16

min⃗θ

CPU

E( ⃗θ )

VQE : Variational Quantum Eigensolver 

Quantum Circuit

α

β

α

β |1⟩
|0⟩
|1⟩
|0⟩
|1⟩
|0⟩
|1⟩
|0⟩ X
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X Û( ⃗θ )

|Ψ( ⃗θ )⟩ = Û( ⃗θ ) |HF⟩
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- Treats on an equal footing ensemble of states 
- Provides useful data for photochemistry studies (e.g. PES, gradients and NAC)
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⟨ΨB( ⃗θ ) | ĤAS |ΨB( ⃗θ )⟩Measure
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Setup : 
‣ cc-pVDZ basis 
‣ Active space (4 elec. in 3 orb.) 
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‣ Generalised UCCD ansatz
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