Quantum Chemistry $\&$ Quantum Computing

Saad Yalouz

CNRS, Laboratoire de Chimie Quantique de Strasbourg
Institut de Chimie de Strasbourg

Université		
	de Strasbourg	

\langle LCQ $\mid S\rangle$
Laboratoire de Chimie Quantique de strasbourg

Quantum Chemistry \& Quantum Computing

Quantum Chemistry \& Quantum Computing

Quantum Chemistry $\&$ Quantum Computing

Quantum Chemistry \& Quantum Computing

Summary

I) Introduction to quantum computing
II) From quantum computing to chemistry
III) Quantum algorithm for photochemistry
IV) Take home messages
I) Introduction to quantum computing

I) Introduction to quantum computing

-Richard P. Feynman

"Nature (e.g. atoms, molecules ...) isn't classical and if you want to make a simulation of nature, you'd better make it quantum mechanical."

I) Introduction to quantum computing

-Richard P. Feynman

"Nature (e.g. atoms, molecules ...) isn't classical and if you want to make a simulation of nature, you'd better make it quantum mechanical."

Quantum Chemistry

Quantum Computer

I) Introduction to quantum computing

-Richard P. Feynman

"Nature (e.g. atoms, molecules ...) isn't classical and if you want to make a simulation of nature, you'd better make it quantum mechanical."

Quantum Chemistry

Classical Computer
I) Introduction to quantum computing

Classical Computer
Quantum Computer

I) Introduction to quantum computing

I) Introduction to quantum computing

I) Introduction to quantum computing

	Unit of Information	Basic Logic	Prog. Langage
Classical Computer	The Bit		
Quantum Computer	The Qubit $\|Q\rangle=c_{0}\|0\rangle+c_{1}\|1\rangle$		

I) Introduction to quantum computing

I) Introduction to quantum computing

I) Introduction to quantum computing

	Unit of Information	Basic Logic	Prog. Langage
Classical Computer	The Bit	Logical circuit	Fortran, C, Python
Quantum Computer	The Qubit $\|Q\rangle=c_{0}\|0\rangle+c_{1}\|1\rangle$	Quantum Circuit	

I) Introduction to quantum computing

	Unit of Information	Basic Logic	Prog. Langage
Classical Computer	The Bit	Logical circuit	Fortran, C, Python
Quantum Computer	The Qubit $\|Q\rangle=c_{0}\|0\rangle+c_{1}\|1\rangle$	Quantum Circuit	Quantum Physics! (Unitary Transformations)

I) Introduction to quantum computing

QUESTION
Why a Quantum computer is more powerful than a classical one ?
I) Introduction to quantum computing

ANSWER \quad How to encode information in Qubits vs. Bits
I) Introduction to quantum computing

ANSWER How to encode information in Qubits vs. Bits
$N^{\text {Bitatanese }}$ accessible from N (qu)bits

I) Introduction to quantum computing

I) Introduction to quantum computing

$2^{N}$$N$ (qu)bits

I) Introduction to quantum computing

ANSWER How to encode information in Qubits vs. Bits
$N^{\text {Bitatenex }}$ accessible from N (qu)bits

1 bitstring at the time
I) Introduction to quantum computing

ANSWER \quad How to encode information in Qubits vs. Bits
2^{N}
${ }^{\text {Bistaning }}$ accessible from N (qu)bits

I) Introduction to quantum computing

ANSWER \quad How to encode information in Qubits vs. Bits $2 N$ accessible from N (qu)bits

I) Introduction to quantum computing

ANSWER \quad How to encode information in Qubits vs. Bits $2 N$ accessible from N (qu)bits

2^{N} bistrings
simultaneously
I) Introduction to quantum computing

Exemple of Full Quantum Superposition

I) Introduction to quantum computing

I) Introduction to quantum computing

Emerging quantum computers are "NISQ" devices. (NISQ : Noisy Intermediate-Scale Quantum)
I) Introduction to quantum computing

Emerging quantum computers are "NISQ" devices.
(NISQ : Noisy Intermediate-Scale Quantum)

Quantum decoherence
(qubits $=$ open quantum system).

I) Introduction to quantum computing

Emerging quantum computers are "NISQ" devices.
(NISQ : Noisy Intermediate-Scale Quantum)

Quantum decoherence
(qubits $=$ open quantum system).
Only a few qubits accessible

$$
N_{\text {qubits }} \sim 10
$$

I) Introduction to quantum computing

Emerging quantum computers are "NISQ" devices.
(NISQ : Noisy Intermediate-Scale Quantum)

Quantum decoherence
(qubits $=$ open quantum system).
Only a few qubits accessible
(yu0ros oper quaturn syouti).

$$
N_{\text {qubits }} \sim 10
$$

NISQ algorithms

I) Introduction to quantum computing

Emerging quantum computers are "NISQ" devices.
(NISQ : Noisy Intermediate-Scale Quantum)

Quantum decoherence
Only a few qubits accessible
(qubits $=$ open quantum system).

$$
N_{\text {qubits }} \sim 10
$$

NISQ algorithms

- Exponentially fewer resources to store information

I) Introduction to quantum computing

Emerging quantum computers are "NISQ" devices.
(NISQ : Noisy Intermediate-Scale Quantum)

Quantum decoherence
Only a few qubits accessible
(qubits $=$ open quantum system).

$$
N_{\text {qubits }} \sim 10
$$

NISQ algorithms

- Exponentially fewer resources to store information
- Based on a few qubits and quantum gates.

I) Introduction to quantum computing

Emerging quantum computers are "NISQ" devices.
(NISQ : Noisy Intermediate-Scale Quantum)

Quantum decoherence
Only a few qubits accessible
(qubits $=$ open quantum system).

$$
N_{\text {qubits }} \sim 10
$$

NISQ algorithms

- Exponentially fewer resources to store information
- Based on a few qubits and quantum gates.
- Pretty resistant to the noise effects.
I) Introduction to quantum computing

NISQ algorithm: Hybrid Quantum/Classical methods
I) Introduction to quantum computing

NISQ algorithm: Hybrid Quantum/Classical methods

Quantum Computer

I) Introduction to quantum computing

> NISQ algorithm: Hybrid Quantum/Classical methods

I) Introduction to quantum computing

NISQ algorithm: Hybrid Quantum/Classical methods

I) Introduction to quantum computing

NISQ algorithm: Hybrid Quantum/Classical methods

I) Introduction to quantum computing

NISQ algorithm: Hybrid Quantum/Classical methods

II) From quantum computing to chemistry

II) From quantum computing to chemistry

Electronic structure Hamiltonian

(Born-Oppenheimer approximation)

$$
H=-\frac{1}{2} \sum_{i=1}^{N_{e}} \nabla_{r_{i}}^{2}-\sum_{i=1}^{N_{e}} \sum_{A=1}^{N_{a}} \frac{Z_{A}}{\left|r_{i}-R_{A}\right|}+\frac{1}{2} \sum_{i \neq j}^{N_{e}} \frac{1}{\left|r_{j}-r_{j}\right|}
$$

II) From quantum computing to chemistry

Electronic structure Hamiltonian

(Born-Oppenheimer approximation)

$$
H=-\frac{1}{2} \sum_{i=1}^{N_{e}} \nabla_{r_{i}}^{2}-\sum_{i=1}^{N_{e}} \sum_{A=1}^{N_{a}} \frac{Z_{A}}{\left|r_{i}-R_{A}\right|}+\frac{1}{2} \sum_{i \neq j}^{N_{e}} \frac{1}{\left|r_{j}-r_{j}\right|}
$$

II) From quantum computing to chemistry

Electronic structure Hamiltonian
(Born-Oppenheimer approximation)
$H=-\frac{1}{2} \sum_{i=1}^{N_{e}} \nabla_{r_{i}}^{2}-\sum_{i=1}^{N_{e}} \sum_{A=1}^{N_{a}} \frac{Z_{A}}{\left|r_{i}-R_{A}\right|}+\frac{1}{2} \sum_{i \neq j}^{N_{e}} \frac{1}{\left|r_{j}-r_{j}\right|}$

Finding
Ground State
$H\left|\Psi_{0}\right\rangle=E_{0}\left|\Psi_{0}\right\rangle$

Mean-Field Approach

(Hartree-Fock)

Single Configuration
Approximation
$\left|\Psi_{0}\right\rangle \approx\left|\Phi_{H F}\right\rangle$

II) From quantum computing to chemistry

Electronic structure Hamiltonian
(Born-Oppenheimer approximation)
$H=-\frac{1}{2} \sum_{i=1}^{N_{e}} \nabla_{r_{i}}^{2}-\sum_{i=1}^{N_{e}} \sum_{A=1}^{N_{a}} \frac{Z_{A}}{\left|r_{i}-R_{A}\right|}+\frac{1}{2} \sum_{i \neq j}^{N_{e}} \frac{1}{\left|r_{j}-r_{j}\right|}$

Finding
$H\left|\Psi_{0}\right\rangle=E_{0}\left|\Psi_{0}\right\rangle$

II) From quantum computing to chemistry

Electronic structure Hamiltonian
(Born-Oppenheimer approximation)
$H=-\frac{1}{2} \sum_{i=1}^{N_{e}} \nabla_{r_{i}}^{2}-\sum_{i=1}^{N_{e}} \sum_{A=1}^{N_{a}} \frac{Z_{A}}{\left|r_{i}-R_{A}\right|}+\frac{1}{2} \sum_{i \neq j}^{N_{e}} \frac{1}{\left|r_{j}-r_{j}\right|}$

Finding
$H\left|\Psi_{0}\right\rangle=E_{0}\left|\Psi_{0}\right\rangle$
II) From quantum computing to chemistry

Beyond Hartree-Fock: Full Configuration Interaction

II) From quantum computing to chemistry

II) From quantum computing to chemistry

Beyond Hartree-Fock: Full Configuration Interaction

FCI : Ok for very small systems ..
But it scales dramatically with larger ones !

II) From quantum computing to chemistry

Beyond Hartree-Fock: Full Configuration Interaction

FCI: Ok for very small systems
But it scales dramatically with larger ones !

Quantum computers can tackle this !

II) From quantum computing to chemistry

We simulate the very complex electronic structure problem (many electrons in a molecule) with a quantum computer containing small quantum systems that we master (qubits)

Richard P. Feynman

II) From quantum computing to chemistry

We simulate the very complex electronic structure problem (many electrons in a molecule) with a quantum computer containing small quantum systems that we master (qubits)

Richard P. Feynman

II) From quantum computing to chemistry

Richard P. Feynman n

We simulate the very complex electronic structure problem (many electrons in a molecule) with a quantum computer containing small quantum systems that we master (qubits)

II) From quantum computing to chemistry

Richard P. Feynman

We simulate the very complex electronic structure problem (many electrons in a molecule) with a quantum computer containing small quantum systems that we master (qubits)

II) From quantum computing to chemistry

Quantum Circuit

$|H F\rangle=|1100\rangle$
II) From quantum computing to chemistry

II) From quantum computing to chemistry

II) From quantum computing to chemistry

II) From quantum computing to chemistry

II) From quantum computing to chemistry

II) From quantum computing to chemistry

First unitary: $\exp \left(-i \theta_{A} X_{0} Z_{1} X_{2}\right)$
Second unitary : $\exp \left(+i \theta_{B} Y_{1} X_{2}\right)$

II) From quantum computing to chemistry

> VQE : Variational Quantum Eigensolver

II) From quantum computing to chemistry

> VQE : Variational Quantum Eigensolver

II) From quantum computing to chemistry

VQE : Variational Quantum Eigensolver

II) From quantum computing to chemistry

VQE : Variational Quantum Eigensolver

II) From quantum computing to chemistry

VQE : Variational Quantum Eigensolver

III) Quantum algorithm for photochemistry

III) Quantum algorithm for photochemistry

Conical intersection

Singular point of degeneracy connecting two
Potential Energy Surfaces

III) Quantum algorithm for photochemistry

III) Quantum algorithm for photochemistry

III) Quantum algorithm for photochemistry

SA-OO-VQE: State-Averaged Orbital-Optimized VQE

- Treats on an equal footing ensemble of states
- Provides useful data for photochemistry studies (e.g. PES, gradients and NAC)
III) Quantum algorithm for photochemistry

Molecular system

$\hat{H}^{A S}$
III) Quantum algorithm for photochemistry

III) Quantum algorithm for photochemistry

III) Quantum algorithm for photochemistry

III) Quantum algorithm for photochemistry

III) Quantum algorithm for photochemistry

III) Quantum algorithm for photochemistry

III) Quantum algorithm for photochemistry

Setup :

- cc-pVDZ basis
- Active space (4 elec. in 3 orb.)
- Optimiser = SLSQP
- Generalised UCCD ansatz

III) Quantum algorithm for photochemistry

Setup :

- cc-pVDZ basis
- Active space (4 elec. in 3 orb.)
- Optimiser = SLSQP
- Generalised UCCD ansatz

Ground and first excited state PESs
III) Quantum algorithm for photochemistry

III) Quantum algorithm for photochemistry

Ab initio Quantum Dynamics
Nuclear derivatives

$$
\frac{d E_{I}}{d x}
$$

Nuclear forces with respect to coordinate " x "

III) Quantum algorithm for photochemistry

Ab initio Quantum Dynamics

Nuclear derivatives

$$
\frac{d E_{I}}{d x}
$$

Nuclear forces with respect to coordinate " x "

Non-adiabatic couplings

$$
D_{I J}=\left\langle\Psi_{I} \left\lvert\, \frac{d}{d x} \Psi_{J}\right.\right\rangle
$$

Coupling between two states through nuclear vibrations

III) Quantum algorithm for photochemistry

```
Nuclear derivatives
d\mp@subsup{E}{I}{}
```

Nuclear forces with respect
to coordinate " x "

Non-adiabatic couplings

$$
D_{I J}=\left\langle\Psi_{I} \left\lvert\, \frac{d}{d x} \Psi_{J}\right.\right\rangle
$$

Coupling between two states through nuclear vibrations

III) Quantum algorithm for photochemistry

$\frac{d E_{I}}{d x} \xrightarrow{\text { PROBLEM! }} \frac{\partial E_{I}}{\partial \kappa_{p q}} \neq 0 \quad \& \quad \frac{\partial E_{I}}{\partial \theta_{n}} \neq 0$

Nuclear forces with respect
to coordinate " x "

Non-adiabatic couplings

$$
D_{I J}=\left\langle\Psi_{I} \left\lvert\, \frac{d}{d x} \Psi_{J}\right.\right\rangle
$$

Coupling between two states through nuclear vibrations

III) Quantum algorithm for photochemistry

Nuclear derivatives

$$
\frac{d E_{I}}{d x}
$$

Nuclear forces with respect
to coordinate " x "

Non-adiabatic couplings

$$
D_{I J}=\left\langle\Psi_{I} \left\lvert\, \frac{d}{d x} \Psi_{J}\right.\right\rangle
$$

Coupling between two states through nuclear vibrations

$$
\frac{d E_{I}}{d x} \xrightarrow{\text { PROBLEM }!} \frac{\partial E_{I}}{\partial \kappa_{p q}} \neq 0 \quad \& \quad \frac{\partial E_{I}}{\partial \theta_{n}} \neq 0
$$

Lagrange multiplier method

$$
\mathscr{L}_{I}=E_{I}+\sum_{p q} \bar{\kappa}_{p q}^{I} \frac{\partial E^{S A}}{\partial \kappa_{p q}}+\sum_{n} \bar{\theta}_{n}^{I} \frac{\partial E^{S A}}{\partial \theta_{n}}
$$

III) Quantum algorithm for photochemistry

Nuclear derivatives

$$
\frac{d E_{I}}{d x}
$$

Nuclear forces with respect
to coordinate " x "

Non-adiabatic couplings

$$
D_{I J}=\left\langle\Psi_{I} \left\lvert\, \frac{d}{d x} \Psi_{J}\right.\right\rangle
$$

Coupling between two states through nuclear vibrations

$$
\frac{d E_{I}}{d x} \xrightarrow{\text { PROBLEM }!} \frac{\partial E_{I}}{\partial \kappa_{p q}} \neq 0 \quad \& \quad \frac{\partial E_{I}}{\partial \theta_{n}} \neq 0
$$

Lagrange multiplier method

$$
\mathscr{L}_{I}=E_{I}+\sum_{p q} \bar{\kappa}_{p q}^{I} \frac{\partial E^{S A}}{\partial \kappa_{p q}}+\sum_{n} \bar{\theta}_{n}^{I} \frac{\partial E^{S A}}{\partial \theta_{n}} \quad \frac{\partial \mathscr{L}_{I}}{\partial \kappa_{p q}}=\frac{\partial \mathscr{L}_{I}}{\partial \theta_{n}}=0
$$

III) Quantum algorithm for photochemistry

Nuclear derivatives

$$
\frac{d E_{I}}{d x}
$$

Nuclear forces with respect
to coordinate " x "

Non-adiabatic couplings

$$
D_{I J}=\left\langle\Psi_{I} \left\lvert\, \frac{d}{d x} \Psi_{J}\right.\right\rangle
$$

Coupling between two states through nuclear vibrations

$$
\frac{d E_{I}}{d x} \xrightarrow{\text { PROBLEM }!} \frac{\partial E_{I}}{\partial \kappa_{p q}} \neq 0 \quad \& \quad \frac{\partial E_{I}}{\partial \theta_{n}} \neq 0
$$

Lagrange multiplier method

$$
\mathscr{L}_{I}=E_{I}+\sum_{p q} \bar{\kappa}_{p q}^{I} \frac{\partial E^{S A}}{\partial \kappa_{p q}}+\sum_{n} \bar{\theta}_{n}^{I} \frac{\partial E^{S A}}{\partial \theta_{n}} \quad \frac{\partial \mathscr{L}_{I}}{\partial \kappa_{p q}}=\frac{\partial \mathscr{L}_{I}}{\partial \theta_{n}}=0
$$

$$
\left(\begin{array}{ll}
\mathbf{H}_{S A}^{\mathrm{OO}} & \mathbf{H}_{S A}^{\mathrm{OC}} \\
\mathbf{H}_{S A}^{\mathrm{CO}} & \mathbf{H}_{S A}^{\mathrm{CC}}
\end{array}\right)\binom{\bar{\kappa}^{I}}{\bar{\theta}^{I}}=-\binom{\mathbf{G}^{O, I}}{\mathbf{G}^{C, I}}
$$

III) Quantum algorithm for photochemistry

Nuclear derivatives

$$
\frac{d E_{I}}{d x}
$$

Nuclear forces with respect
to coordinate " x "

Non-adiabatic couplings

$$
D_{I J}=\left\langle\Psi_{I} \left\lvert\, \frac{d}{d x} \Psi_{J}\right.\right\rangle
$$

Coupling between two states through nuclear vibrations

$$
\frac{d E_{I}}{d x} \xrightarrow{\text { PROBLEM }!} \frac{\partial E_{I}}{\partial \kappa_{p q}} \neq 0 \quad \& \quad \frac{\partial E_{I}}{\partial \theta_{n}} \neq 0
$$

Lagrange multiplier method

$$
\mathscr{L}_{I}=E_{I}+\sum_{p q} \bar{\kappa}_{p q}^{\prime} \frac{\partial E^{S A}}{\partial \kappa_{p q}}+\sum_{n} \bar{\theta}_{n}^{\prime} \frac{\partial E^{S A}}{\partial \theta_{n}} \frac{\partial \mathscr{L}_{I}}{\partial \kappa_{p q}}=\frac{\partial \mathscr{L}_{I}}{\partial \theta_{n}}=0
$$

Can be measured out of the circuit !

III) Quantum algorithm for photochemistry

Nuclear derivatives

$$
\frac{d E_{I}}{d x}
$$

Nuclear forces with respect
to coordinate " x "

Non-adiabatic couplings

$$
D_{I J}=\left\langle\Psi_{I} \left\lvert\, \frac{d}{d x} \Psi_{J}\right.\right\rangle
$$

Coupling between two states through nuclear vibrations

$$
\frac{d E_{I}}{d x} \xrightarrow{\text { PROBLEM! }} \frac{\partial E_{I}}{\partial \kappa_{p q}} \neq 0 \quad \& \quad \frac{\partial E_{I}}{\partial \theta_{n}} \neq 0
$$

Lagrange multiplier method

$$
\mathscr{L}_{I}=E_{I}+\sum_{p q} \bar{\kappa}_{p q}^{\prime} \frac{\partial E^{S A}}{\partial \kappa_{p q}}+\sum_{n} \bar{\theta}_{n}^{\prime} \frac{\partial E^{S A}}{\partial \theta_{n}} \frac{\partial \mathscr{L}_{I}}{\partial \kappa_{p q}}=\frac{\partial \mathscr{L}_{I}}{\partial \theta_{n}}=0
$$

$$
\left(\begin{array}{ll}
\mathbf{H}_{S A}^{\mathrm{OO}} & \mathbf{H}_{S A}^{\mathrm{OC}} \\
\mathbf{H}_{S A}^{\mathrm{CO}} & \mathbf{H}_{S A}^{\mathrm{CC}}
\end{array}\right)\binom{\bar{\kappa}^{I}}{\bar{\theta}^{I}}=-\binom{\mathbf{G}^{O, I}}{\mathbf{G}^{C, I}}
$$

Can be measured out of the circuit !

III) Quantum algorithm for photochemistry

Nuclear derivatives

$$
\frac{d E_{I}}{d x}
$$

$$
\frac{d E_{I}}{d x} \xrightarrow{\text { PROBLEM }!} \frac{\partial E_{I}}{\partial \kappa_{p q}} \neq 0 \quad \& \quad \frac{\partial E_{I}}{\partial \theta_{n}} \neq 0
$$

Lagrange multiplier method
Nuclear forces with respect
to coordinate " x "

Non-adiabatic couplings

$$
D_{I J}=\left\langle\Psi_{I} \left\lvert\, \frac{d}{d x} \Psi_{J}\right.\right\rangle
$$

Coupling between two states through nuclear vibrations

$$
\mathscr{L}_{I}=E_{I}+\sum_{p q} \bar{\kappa}_{p q}^{I} \frac{\partial E^{S A}}{\partial \kappa_{p q}}+\sum_{n} \bar{\theta}_{n}^{I} \frac{\partial E^{S A}}{\partial \theta_{n}}
$$

$$
\frac{\partial \mathscr{L}_{I}}{\partial \kappa_{p q}}=\frac{\partial \mathscr{L}_{I}}{\partial \theta_{n}}=0
$$

Can be measured out of the circuit !

$$
\frac{d E_{I}}{d x}=\sum_{p q} \frac{\partial h_{p q}}{\partial x} \gamma_{p q}^{I, e f f}+\frac{1}{2} \sum_{p q r s} \frac{\partial g_{p q r s}}{\partial x} \Gamma_{p q r s}^{I, e f f}+\sum_{J} \sum_{n} w_{J} \bar{\theta}_{n}^{I} G_{n}^{C, J}\left(\frac{\partial \hat{H}}{\partial x}\right)
$$

III) Quantum algorithm for photochemistry

Noiseless Simulations

III) Quantum algorithm for photochemistry

Noiseless Simulations

III) Quantum algorithm for photochemistry

Noiseless Simulations

SA-OO-VQE $=$ Quantum analog of SA-CASSCF

Take Home Messages

Take Home Messages

Take Home Messages

Quantum Algorithm

Take Home Messages

Quantum Algorithm

Take Home Messages

Take Home Messages

Quantum Algorithm

Take Home Messages

Quantum Algorithm

Take Home Messages

SA-OO-VQE: Quantum algorithm for photo-chemistry

S. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.
S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

Take Home Messages

SA-OO-VQE: Quantum algorithm for photo-chemistry

Description of degenerated PES

S. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.
S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

Take Home Messages

SA-OO-VQE: Quantum algorithm for photo-chemistry

Nuclear
derivatives
$\frac{d E_{I}}{d x}$

S. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.
S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

Take Home Messages

SA-OO-VQE: Quantum algorithm for photo-chemistry

S. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.
S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

Take Home Messages

SA-OO-VQE: Quantum algorithm for photo-chemistry

Nuclear Non-adiabatic couplings derivatives

$$
\frac{d E_{I}}{d x} \quad D_{I J}=\left\langle\Psi_{I} \left\lvert\, \frac{d}{d x} \Psi_{J}\right.\right\rangle
$$

MECI
optimization
S. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.
S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

Take Home Messages

SA-OO-VQE: Quantum algorithm for photo-chemistry

〈LCQ|S〉

Quantum

 Software/HardwareS. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.
S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

Take Home Messages

SA-OO-VQE: Quantum algorithm for photo-chemistry

Description of degenerated PES	Nuclear derivatives	Non-adiabatic couplings
	$\frac{d E_{I}}{d x}$	$D_{I J}=\left\langle\Psi_{I} \left\lvert\, \frac{d}{d x} \Psi_{J}\right.\right\rangle$

MECI optimization

> Thank you for your attention!
S. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.
S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

