Saad Yalouz

Laboratoire de Chimie Quantique de Strasbourg

CNRS, Laboratoire de Chimie Quantique de Strasbourg Institut de Chimie de Strasbourg

$LCQ |S\rangle$

Laboratoire de Chimie Quantique de Strasbourg

Quantum Hardware

Laboratoire de Chimie Quantique de Strasbourg

$\left(LCQ \mid S \right)$

Quantum Hardware

Laboratoire de Chimie Quantique de Strasbourg

Quantum Hardware

Laboratoire de Chimie Quantique de Strasbourg

I) IV) Take home messages

- **Introduction to quantum computing**
- **II)** From quantum computing to chemistry
- **III)** Quantum algorithm for photochemistry

-Richard P. Feynman

"Nature (e.g. atoms, molecules ...) isn't classical and if you want to make a simulation of nature, you'd better make it quantum mechanical."

-Richard P. Feynman

"Nature (e.g. atoms, molecules ...) isn't classical and if you want to make a simulation of nature, you'd better make it quantum mechanical."

-Richard P. Feynman

"Nature (e.g. atoms, molecules ...) isn't classical and if you want to make a simulation of nature, you'd better make it quantum mechanical."

Classical Computer

Quantum Computer

Basic Logic	Prog. Langage

Basic Logic	Prog. Langage

Basic Logic	Prog. Langage

Basic Logic	Prog. Langage
Logical circuit	

Basic Logic	Prog. Langage
Logical circuit	
Quantum CircuitImage: Construction of the second sec	

Basic Logic	Prog. Langage
Logical circuit	<section-header>Fortran, C, Python(\$, \$, \$, \$, \$, \$, \$, \$, \$, \$, \$, \$, \$, \$</section-header>
Quantum CircuitImage: Construction of the second sec	

ANSWER

How to encode information in Qubits vs. Bits

ANSWER

ANSWER

ANSWER

Exemple of Full Quantum Superposition

Let's build a quantum circuit !

Emerging quantum computers are "NISQ" devices. (NISQ: Noisy Intermediate-Scale Quantum)

Emerging quantum computers are "NISQ" devices. (NISQ : Noisy Intermediate-Scale Quantum)

NISQ algorithm: Hybrid Quantum/Classical methods

Quantum Computer

NISQ algorithm: Hybrid Quantum/Classical methods

Quantum Computer

NISQ algorithm: Hybrid Quantum/Classical methods

Classical Computer

Quantum Computer

NISQ algorithm: Hybrid Quantum/Classical methods

Classical Computer \mathbf{CPU} Measure $\big\langle \hat{O}_{\Psi(\overrightarrow{\theta})} \big\rangle = \big\langle \Psi(\overrightarrow{\theta}) \, \big| \, \hat{O} \, | \, \Psi(\overrightarrow{\theta}) \big\rangle$ Classical Optimization of $\vec{\theta}$

NISQ algorithm: Hybrid Quantum/Classical methods

NISQ algorithm: Hybrid Quantum/Classical methods

Electronic structure Hamiltonian (Born-Oppenheimer approximation)

$$H = -\frac{1}{2} \sum_{i=1}^{N_e} \nabla_{r_i}^2 - \sum_{i=1}^{N_e} \sum_{A=1}^{N_a} \frac{Z_A}{|r_i - R_A|} + \frac{1}{2} \sum_{i \neq j}^{N_e} \frac{1}{|r_j - r_j|}$$

Electronic structure Hamiltonian (Born-Oppenheimer approximation)

Mean-Field Approach (Hartree-Fock)

Single Configuration Approximation

 $|\Psi_0\rangle \approx |\Phi_{HF}\rangle$

Mean-Field Approach (Hartree-Fock)

Single Configuration Approximation

 $|\Psi_0\rangle \approx |\Phi_{HF}\rangle$

Beyond Hartree-Fock: Full Configuration Interaction

 $|HF\rangle = |1100\rangle$

FCI : Ok for very small systems ... But it scales dramatically with larger ones !

We simulate the very complex electronic structure problem (many electrons in a molecule) with a quantum computer containing small quantum systems that we master (qubits)

Richard P. Feynman

We simulate the very complex electronic structure problem (many electrons in a molecule) with a quantum computer containing small quantum systems that we master (qubits)

Richard P. Feynman

We simulate the very complex electronic structure problem (many electrons in a molecule) with a quantum computer containing small quantum systems that we master (qubits)

Richard P. Feynman

We simulate the very complex electronic structure problem (many electrons in a molecule) with a quantum computer containing small quantum systems that we master (qubits)

Richard P. Feynman

Quantum Circuit

II) From quantum computing to chemistry Unitary Coupled Cluster Ansatz Quantum Circuit $\hat{U}(\overline{6}$ $\hat{U}(\vec{\theta})$

 $|HF\rangle = |1100\rangle$ $|\Psi(\vec{\theta})\rangle = \hat{U}(\vec{\theta})|HF\rangle$

$$\vec{\theta}$$
) = $e^{T(\vec{\theta}) - T(\vec{\theta})^{\dagger}}$

II) From quantum computing to chemistry Unitary Coupled Cluster Ansatz Quantum Circuit $-T(\overrightarrow{\theta})^*$ $\hat{U}(\vec{\theta}) = e^{i\theta}$ $T(\vec{\theta}) = \sum_{i=1}^{virt} \sum_{i=1}^{occ} \theta_i^a a_a^{\dagger} a_i$ $\hat{U}(\vec{\theta})$ a $|\Psi(\vec{\theta})\rangle = \hat{U}(\vec{\theta})|HF\rangle$ $|HF\rangle = |1100\rangle$

II) From quantum computing to chemistry Unitary Coupled Cluster Ansatz Quantum Circuit $\hat{U}(\vec{\theta})$ $T(\vec{\theta}) = \sum_{i=1}^{virt} \sum_{i=1}^{occ} \theta_i^a a_a^{\dagger} a_i$ e⁻ $\hat{U}(\vec{\theta})$ $|\Psi(\vec{\theta})\rangle = \hat{U}(\vec{\theta})|HF\rangle$ $|HF\rangle = |1100\rangle$

Jordan-Wigner **Transformation** $a_p \xrightarrow{JW} \frac{1}{2}(X_p + iY_p)$

Unitary Coupled Cluster Ansatz

Jordan-Wigner **Transformation** $a_p \xrightarrow{JW} \frac{1}{2}(X_p + iY_p)$ q=0

Where $\hat{\mathscr{P}}_k$ are "Pauli strings" $\hat{\mathscr{P}}_k = Z_1 \otimes X_2 \otimes \mathbf{1}_3 \otimes Y_4$

 $R_Y(-\pi/2)$

2 -

 $R_Z(2\theta_A)$

 \oplus

Unitary Coupled Cluster Ansatz

$$(i) = e^{T(\vec{\theta}) - T(\vec{\theta})^{\dagger}}$$

$$(i) = e^{Virt} \quad occ \\ a \quad i \quad \theta^{a} a^{\dagger}_{a} a_{i}$$

$$(i) = e^{I(\vec{\theta}) - T(\vec{\theta})^{\dagger}}$$

$$(i) = e^{I(\vec{\theta})$$

Jordan-Wigner
Transformation

$$a_p \xrightarrow{JW} \frac{1}{2}(X_p + iY_p) \bigotimes_{q=0}^{p-1}$$

$$\hat{U}(\overrightarrow{\theta}) \approx \prod_{k} e^{-i\theta_{k}\hat{\mathscr{P}}_{k}} \quad \text{Where } \hat{\mathscr{P}}_{k} \text{ are "Pauli strings"} \\ \hat{\mathscr{P}}_{k} = Z_{1} \otimes X_{2} \otimes \mathbf{1}_{3} \otimes Y_{4}$$

Second unitary :
$$\exp(+i\theta_B Y_1 X_2)$$

 $R_Y(\pi/2)$
 $R_X(\pi/2)$
 $R_X(\pi/2)$
 $R_X(\pi/2)$
 $R_Y(\pi/2)$
 $R_Y(\pi/2)$
 $R_Y(\pi/2)$
 $R_Y(\pi/2)$
 $R_Y(\pi/2)$
 $R_Y(\pi/2)$
 $R_Y(\pi/2)$

VQE : Variational Quantum Eigensolver

VQE : Variational Quantum Eigensolver

CPU

III) Quantum algorithm for photochemistry

III) Quantum algorithm for photochemistry

Conical intersection

Singular point of degeneracy connecting two Potential Energy Surfaces

III) Quantum algorithm for photochemistry

Conical intersection

Singular point of degeneracy connecting two Potential Energy Surfaces

Conical intersection

Singular point of degeneracy connecting two Potential Energy Surfaces

Challenge! Demo

Democratic treatment of Ground + Excited states

Conical intersection

Singular point of degeneracy connecting two Potential Energy Surfaces

SA-OO-VQE: State-Averaged Orbital-Optimized VQE

- Treats on an equal footing ensemble of states
- Provides useful data for photochemistry studies (e.g. PES, gradients and NAC)

Democratic treatment of Ground + Excited states

<u>Setup</u>:

- ► cc-pVDZ basis
- ► Active space (4 elec. in 3 orb.)
- Optimiser = SLSQP
- ► Generalised UCCD ansatz

- ► cc-pVDZ basis
- ► Active space (4 elec. in 3 orb.)
- Optimiser = SLSQP
- ► Generalised UCCD ansatz

Ground and first excited state PESs

Nuclear derivatives

 $\frac{dE_I}{dx}$

Nuclear forces with respect to coordinate " x "

Ab initio Quantum Dynamics

Nuclear derivatives

Nuclear forces with respect to coordinate " x "

Non-adiabatic couplings

$$D_{IJ} = \langle \Psi_I | \frac{d}{dx} \Psi_J \rangle$$

Coupling between two states through nuclear vibrations

Ab initio Quantum Dynamics

Nuclear derivatives

$$\frac{dE_I}{dx}$$

Nuclear forces with respect to coordinate " x "

Non-adiabatic couplings

$$D_{IJ} = \langle \Psi_I | \frac{d}{dx} \Psi_J \rangle$$

Coupling between two states through nuclear vibrations

Nuclear derivatives

$\frac{dE_I}{dx}$

 $\frac{d}{d}$

Nuclear forces with respect to coordinate " x "

Non-adiabatic couplings

$$D_{IJ} = \langle \Psi_I | \frac{d}{dx} \Psi_J \rangle$$

Coupling between two states through nuclear vibrations

 $\frac{\partial E_I}{\partial \kappa_{pq}} \neq 0 \quad \& \quad \frac{\partial E_I}{\partial \theta_n} \neq 0$ dE_I PROBLEM ! dx

Nuclear derivatives

$\frac{dE_I}{dx}$

Nuclear forces with respect to coordinate " x "

Non-adiabatic couplings

$$D_{IJ} = \langle \Psi_I | \frac{d}{dx} \Psi_J \rangle$$

Coupling between two states through nuclear vibrations $\frac{d}{d}$

$$\mathscr{L}_{I} = E_{I} + \sum_{pq} \overline{\kappa}_{pq}^{I} \frac{\partial E^{SA}}{\partial \kappa_{pq}} + \sum_{n} \overline{\theta}_{n}^{I} \frac{\partial E^{SA}}{\partial \theta_{n}}$$

Lagrange multiplier method

Nuclear derivatives

$\frac{dE_I}{dx}$

Nuclear forces with respect to coordinate " x "

Non-adiabatic couplings

$$D_{IJ} = \langle \Psi_I | \frac{d}{dx} \Psi_J \rangle$$

Coupling between two states through nuclear vibrations $\frac{d}{d}$

$$\mathscr{L}_I = E_I + \sum_{pq}$$

Nuclear derivatives

$\frac{dE_I}{dx}$

Nuclear forces with respect to coordinate " x "

Non-adiabatic couplings

$$D_{IJ} = \langle \Psi_I | \frac{d}{dx} \Psi_J \rangle$$

Coupling between two states through nuclear vibrations $\frac{d}{d}$

$$\mathscr{L}_I = E_I + \sum_{pq}$$

Nuclear derivatives

$\frac{dE_I}{dx}$

Nuclear forces with respect to coordinate " x "

Non-adiabatic couplings

$$D_{IJ} = \langle \Psi_I | \frac{d}{dx} \Psi_J \rangle$$

Coupling between two states through nuclear vibrations $\frac{d}{d}$

$$\mathscr{L}_I = E_I + \sum_{pq}$$

Nuclear derivatives

$\frac{dE_I}{dx}$

Nuclear forces with respect to coordinate " x "

Non-adiabatic couplings

$$D_{IJ} = \langle \Psi_I | \frac{d}{dx} \Psi_J \rangle$$

Coupling between two states through nuclear vibrations $\frac{d}{d}$

$$\mathscr{L}_I = E_I + \sum_{pq}$$

Nuclear derivatives

$\frac{dE_I}{dx}$

Nuclear forces with respect to coordinate " x "

Non-adiabatic couplings

$$D_{IJ} = \langle \Psi_I | \frac{d}{dx} \Psi_J \rangle$$

Coupling between two states through nuclear vibrations

SA-OO-VQE = Quantum analog of SA-CASSCF

$H|\Psi_0\rangle = E_0|\Psi_0\rangle$

Take Home Messages

H Η $|\Psi_0\rangle =$ $H|\Psi_0\rangle = E_0|\Psi_0\rangle$

Take Home Messages

Quantum Algorithm

H H $|\Psi_0\rangle =$ $H|\Psi_0\rangle = E_0|\Psi_0\rangle$

X X H

Quantum Algorithm

H H $|\Psi_0\rangle = V$ $H|\Psi_0\rangle = E_0|\Psi_0\rangle$

$\begin{array}{c} H \\ H \\ \Psi_{0} \\ \end{array} = E_{0} | \Psi_{0} \\ \end{array}$

 $|\Psi_0\rangle$

H $H|\Psi_0\rangle = E_0|\Psi_0\rangle$

H

Take Home Messages

SA-OO-VQE: Quantum algorithm for photo-chemistry

S. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.

S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

SA-OO-VQE: Quantum algorithm for photo-chemistry

Description of degenerated PES

- S. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.
- S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

SA-OO-VQE: Quantum algorithm for photo-chemistry

Nuclear derivatives

$$\frac{dE_I}{dx}$$

S. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.

S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

SA-OO-VQE: Quantum algorithm for photo-chemistry

Nuclear derivatives

Non-adiabatic couplings

 $\frac{dE_I}{dx} \qquad D_{IJ} = \langle \Psi_I | \frac{d}{dx} \Psi_J \rangle$

S. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.

S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

SA-OO-VQE: Quantum algorithm for photo-chemistry

S. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.

S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

SA-OO-VQE: Quantum algorithm for photo-chemistry

S. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.

S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

LCQ S Quantum Software/Hardware

SA-OO-VQE: Quantum algorithm for photo-chemistry

S. Yalouz et al. Quantum Science and Technology 6.2 (2021): 024004.

S. Yalouz et al. Journal of chemical theory and computation 18.2 (2022): 776-794.

LCQ S Quantum Software/Hardware

Thank you for your attention !

