

Magneto-Chiral Anisotropy: From Fundamentals to Potential Applications

Dr. Matteo ATZORI

CNRS Researcher matteo.atzori@lncmi.cnrs.fr

Laboratoire National des Champs Magnétiques Intenses

Grenoble - Toulouse

Outline

- **Symmetry**
- **Ingredients for Magneto-Chiral Effects**
- **Electrical Magneto-Chiral Anisotropy**
- **Optical Magneto-Chiral Anisotropy**
- **Conclusions**

Symmetry

- **Continuous symmetries (Noether theorem):**

Time-translation invariance, $t \to t + \Delta t \Leftrightarrow$ Energy conservation

Translational invariance, $r \rightarrow r + \Delta r \Leftrightarrow Momentum conservation$

Rotational invariance, $\varphi \to \varphi + \varphi \Leftrightarrow$ Angular momentum conservation

- **Charge, Parity, Time reversal (CPT) symmetry:**

Charge conjugation, **C**, $q \rightarrow -q$ (matter \rightarrow anti-matter)

Parity transformation, P *, r* \rightarrow - *r* (mirror image)

Time-reversal, T , $t \rightarrow -t$ (play movie backwards)

CPT symmetry of a Magnetic Field *B*

- **CPT symmetry:**

Charge conjugation, **C**, $B \rightarrow -B$ (holes \rightarrow electrons)

Parity transformation, P *,* $B \rightarrow B$ *(does not change)*

Time reversal, T , $B \rightarrow -B$ (electrons flowing in opposite directions)

Magnetic field is a time-odd pseudo-vector

Chirality

A system is called chiral when it exists in two non-superimposable forms (enantiomers) that can only be interconverted by a parity operation

Chirality breaks parity (or mirror) symmetry

CPT symmetry of a Physical Entities

Magneto-Chiral Effects

Magneto-Chiral Anisotropy

Transport: Electrical or thermal conductivity, sound propagation, dielectric displacement (**eMChA**)

Optics: light absorption or emission for all energies of the electromagnetic spectrum (**oMChA**)

Chirality + Electric Current + Magnetic Field

$$
R(\mathbf{B},\mathbf{I})^{D/L} = R_0(1 + \beta B^2 + \mathbf{\Omega}^{D/L}\mathbf{B}\cdot\mathbf{I})
$$

$$
\frac{R(\mathbf{B}, \mathbf{I})^{D/L} - R(-\mathbf{B}, \mathbf{I})^{D/L}}{R_0} = 2\Omega^{D/L} \mathbf{B} \cdot \mathbf{I}
$$

G.L.J.A. Rikken, J. Fölling, P. Wyder*, Phys. Rev. Lett.* **2001**, *87*, 236602

G.L.J.A. Rikken, J. Fölling, P. Wyder*, Phys. Rev. Lett.* **2001**, *87*, 236602

G.L.J.A. Rikken and N. Avarvari*, Phys. Rev. B* **2019**

eMChA in the chiral molecular conductors: (S,S)- or (R,R)-[DM-EDT-TTF]₂ClO₄

F. Pop, P. Auban-Senzier, E. Canadell, G. L. J. A. Rikken, N. Avarvari, *Nat. Commun.* **2014**, 5, 3757

Summary of eMChA

Other chiral semi-conductor candidates:

Se, α -HgS, π -SnS, In₂Se₃, AlInSe₃, GaInSe₃, α - Al₂S₃, BaSi₂, CrSi₂, MoSi₂, WSi₂

G. L. J. A. Rikken, N. Avarvari, *Nat. Commun.* **2022**, 13, 3564 G. L. J. A. Rikken, N. Avarvari, *Phys. Rev. B* **2022**, 106, 224307 *

Magneto-Chiral Effects in Optics

Interaction of Chiral Systems with Circularly Polarized Light

Natural Optical Activity: Natural Circular Dichroism (NCD)

Breaking of space-reversal symmetry by chirality leads to natural optical activity

Interaction of a system with Circularly Polarized Light and Magnetic Field

Magnetic Optical Activity: Magnetic Circular Dichroism (MCD)

Breaking of time-reversal symmetry by magnetic fields leads to magnetic optical activity

Optical Magneto-Chiral Anisotropy

Breaking both time-reversal and mirror symmetry leads to **Magneto-Chiral Anisotropy**

L. D. Barron, *Chem. Soc. Rev.* **1986**,15, 189

Light-Matter Interaction of Chiral Magnetized Systems

Magneto-Chiral Anisotropy: Magnetic Chiral Dichroism (MChD)

$\varepsilon(\lambda, k, B) = \varepsilon_0(\lambda) \pm \alpha^{d/l}(\lambda) k \pm \beta(\lambda) B + \gamma^{d/l}(\lambda) k \cdot B$

L. D. Barron & J. Vrbancich *Molecular Physics* **1984**,51, 715

Magneto-Chiral Dichroism (MChD)

The Light Absorption of Chiral Systems in Magnetic Fields is enantioselective

$$
A = A_0 + \Delta A^{\Delta/\Lambda}
$$

G. Rikken and E. Raupach*, Nature* **1997**, *390*, 493

Magneto-Chiral Dichroism (MChD)

A phenomenon difficult to detect: Experimental setup available at the LNCMI

Magneto-Chiral Dichroism

Potential Technological Application:

Optical read-out of magnetic data

Nature Physics **2015**, *11*, 7

Chiral Ln Complex

Chiral Helical Chains

 $[(\Delta/\Lambda)$ -**Mn^{II}**(Λ/Δ)-**Cr^{III}**(C_2O_4)₃]⁻

G. Rikken & E. Raupach *Nature* **1997**

C. Train, G. Rikken *et al. Nature Materials* **2008**

[Co^{II}(*hfac*)₂NITPhOMe]

R. Sessoli, A. Rogalev *et al. Nature Physics* **2015**

Ø **Observed only in few systems**

Ø **Lack of systematic investigations**

M. Atzori *et al., Chem.–Eur. J.* **2020**, 26, 9784-9791

MChD probed by light emission: Luminescence of a chiral Ln complex

ü **First experimental evidence of MChD**

- \checkmark A chiral Eu^{III} complex with chiral ligands selected from the chiral pool
- \checkmark ⁵D₀ \rightarrow ⁷F₁ and ⁵D₀ \rightarrow ⁷F₂ transitions probed

$$
g_{MChD} = \frac{\left(I(B \uparrow \uparrow k) - I(B \downarrow \uparrow k)\right)}{\frac{1}{2}\left(I(B \uparrow \uparrow k) + I(B \downarrow \uparrow k)\right)B}
$$

MChD probed by X-ray absorption: Helical Co^{II}-radical Single-Chain Magnet

- ü **No signal** for the **Mn(II)** derivative
- ü **Strong signal** for the **Co(II)** derivative
- \checkmark Influence of the orbital moment on the intensity of MChD

ü **Metal-radical 1D compounds obtained by spontaneous resolution**

R. Sessoli *et al., Nature Phys.* **2015**, *11*, 69

MChD probed by Visible light absorption:

Enantiopure Chiral Ferromagnet obtained by enantioselective self-assembly

C. Train *et al.*, *Nature Mater.* **2008**, *7*, 729

MChD probed by Visible light absorption:

Enantiopure Chiral Ferromagnet obtained by enantioselective self-assembly

C. Train *et al.*, *Nature Mater.* **2008**, *7*, 729

My contribution to this Research Field

- **1. Understand the microscopic physico-chemical parameters governing MChD**
- **2. Enhance the strength of MChD** by chemical design
- **3. Increase the temperature** at which this phenomenon is observed
- 4. Prove that **MChD** is a **technological relevant optical phenomenon**

Overview of Investigated Systems

MChD investigation in:

Motivation: Increase MChD viable temperature by chemical design

Chiral Prussian Blue Analogue \lceil **Cr^{III}(CN)₆]** \lceil **Mn^{II}((***X***)-pnH)(H₂O)¹·H₂O**

(X = *S*, *R;* pnH = 1,2-diaminopropane **as chiral coligand**)

2D-layered structure

K. Inoue *et al. Angew. Chem. Int. Ed.* **2003**, *42*, 4810

Magnetic Properties

Molecular ferrimagnet with a relatively high ordering temperature: 38 K

M. Atzori *et al. J. Am. Chem. Soc.* **2019**, *141,* 20022

Temperature dependence of absorption in the Visible

M. Atzori *et al. J. Am. Chem. Soc.* **2019**, *141,* 20022

Magneto-Chiral Optical Response: MChD

- \checkmark MChD is observed despite the **second coordination sphere chiral features of the magnetic centers**
- ü **Mirror images of MChD** observed for the two enantiomers
- ü **MChD signals arises from Mn^{II}**, with a negligible orbital contribution to the magnetic moment but coordinated by the chiral ligand

Temperature dependence of MChD signals

MChD persists up to 43 K

M. Atzori *et al. J. Am. Chem. Soc.* **2019**, *141,* 20022

Temperature and Field dependence of MChD and Magnetization

MChD signals accurately follow the magnetization as a function of *T* **and** *B*

M. Atzori *et al. J. Am. Chem. Soc.* **2019**, *141,* 20022

M. Atzori *et al. J. Mater. Chem. C* **2022**, *10*, 13939-13945

Motivation: Correlate MChD to Magnetic Anisotropy

$[MnIII(cyclam)(SO₄)]ClO₄·H₂O$

(cyclam = 1,4,8,11-tetraazacyclotetradecane)

Structure made of 1D chiral chains by spontaneous resolution

S. Mossin *et al. Dalton. Trans.,* **2004**, 632-639

With: R. Sessoli, F. Santanni, A. Caneschi (Florence – Italy)

Magnetic Properties

Magnetic behaviour of a canted antiferromagnet (weak ferromagnet)

S. Mossin *et al. Dalton. Trans.,* **2004**, 632-639

Temperature dependence of absorption in the Visible

M. Atzori *et al. J. Am. Chem. Soc.* **2020***, 142,* 13908-13916

Magneto-Chiral Optical Response: MChD

- \checkmark Mirror MChD spectra observed for the two enantiomers
- \checkmark MChD observed despite the second coordination sphere chiral features of the magnetic centers
- ü **Strong signals arises from the** *d-d* **transitions associated to spin-orbit character**

M. Atzori *et al. J. Am. Chem. Soc.* **2020***, 142,* 13908-13916

Temperature and Field dependence of MChD and Magnetization

MChD signals follow the *T* **and** *B* **dependence of M and reproduce the strong magnetic anisotropy of the system**

M. Atzori *et al. J. Am. Chem. Soc.* **2020***, 142,* 13908-13916

Motivation: Understand the microscopic parameters governing MChD

 $[M^{\text{II}}(\text{en})_{3}](\text{NO}_{3})_{2}$ (en = ethylenediamine, **M** = Ni^{II}, Co^{II})

- \checkmark Enantiopure Λ and Λ complexes obtained by spontaneous resolution
- ü Large and **optical transparent** single crystals
- \checkmark Isolated metal centers: only M^{II} *d-d* **transitions probed**
- Paramagnetic behavior
- ü **Intense NCD at the metal center**

 $[(\Lambda)$ -M^{II}(en)₃]²⁺

 $[(\Delta)$ -M^{II}(en)₃]²⁺

 $\left[\text{Ni}^{\text{II}}\text{(en)}\right]$ $\left(\text{NO}_3\right)$

With: E. Hillard, P. Rosa (ICMCB, Univ. Bordeaux)

M. Atzori *et al. Sci. Adv.* **2021**, 7, eabg2859

MChD data as a function of the temperature compared to optical absorption and Natural Circular Dichroism

 \checkmark Linear variation of ΔA_{MChD} with *B (low fields)*

 \checkmark Linear variation of ΔA_{MchD} with *1/T (Curie Law)*

M. Atzori *et al. Sci. Adv.* **2021**, 7, eabg2859

MChD measurements as a function of the crystal orientation

M. Atzori *et al. Sci. Adv.* **2021**, 7, eabg2859

Experimental and Calculated MChD spectra

M. Atzori *et al. Sci. Adv.* **2021**, 7, eabg2859

Motivation: Correlate MChD to the character of electronic transitions

$\left[$ [Yb^{III}((*X*)-**L**)(*hfac*)₃] (*X* = *P*, *M*)

J. Am. Chem. Soc. **2021***, 143,* 2671–2675

With: F. Pointillart, J. Crassous, B. Le Guennic (Univ. Rennes)

First Observation of MChD through Light Absorption in Lanthanides

- ü One well-defined *f-f* electronic transition with $|\Delta J|$ = 1
- Absorption spectrum split by Crystal Field and Vibronic Coupling
- Strong signal associated to to the high SOC, local chirality and MD character of the electronic transition

J. Am. Chem. Soc. **2021***, 143,* 2671–2675

Temperature and Field dependence of MChD

J. Am. Chem. Soc. **2021***, 143,* 2671–2675

Temperature dependence of MChD signals

A **and** *C* **MChD terms and** *T* **dependence as predicted by MChD theory**

J. Am. Chem. Soc. **2021***, 143,* 2671–2675

s MChD in Chival Vttouhium Complex 4. MChD in Chiral Ytterbium Complexes Although it was considered and required to describe the MChD spectrum of the Ni(II) complex, it can also be noted that the results were unsuccessful for the Co(II) version. The approach

 V ibronic coupling has been attributed to explain the lower intensities and the broadening of the broadening of

unit cell to mimic the environment of the environment of the crystal appeared to be essential. On this basis, t

and the external magnetic field (along the of the direction of the vibronic coupling is not straightforward and the vibronic coupling is not straightforward and the vibronic coupling is not straightforward and the vibroni $\frac{1}{2}$

Punpublished Results and a state of an isotropic signal. Calculations did at SA-CAS(13,7)PT2/RASSI-SO level. Calculations did at SA-CAS(13,7)PT2/RASSI-SO level. Calculations did at SA-CAS(13,7)PT2/RASSI-SO level. Calcu The analysis can be extended and the *C* terms can be decomposed into their contribution from

MChD in chiral coordination polymers

Slow magnetic relaxation and CPL at room temperature

Angew. Chem. Int. Ed. **2022**, e202215558K

With: F. Pointillart, J. Crassous, B. Le Guennic (Univ. Rennes)

Strong MChD, detectable up to room temperature

Angew. Chem. Int. Ed. **2022**, e202215558K

Room temperature MChD

Low temperature MChD *C* **term and room temperature MChD** *A* **term**

Angew. Chem. Int. Ed. **2022**, e202215558K

Magnetic Field dependence of MChD

Magneto-chiral optical data perfectly follow the magnetization

Angew. Chem. Int. Ed. **2022**, e202215558K

Key-role of magnetic-dipole allowed transitions

unambiguously determined

With: X.-J. Kong (Xiamen – China)

J. Am. Chem. Soc. **2024***, 146,* 16389–16393

Selection rules for strong MChD-active electronic transitions

in lanthanides complexes

With: F. Zinna, F. Pineider, L. Di Bari (University of Pisa)

Table 1: Assignment of the Er^{III} and Tm^{III} absorption peaks, transition properties, Richardson's classification^[38] and g_{MChD} values (T=4.0 K and **B**= $1.0T$).

Compound	λ (nm)	Electronic transition	Transition properties	Richardson classification	g_{MchD} (T^{-1}) , λ (nm)
Er	475-495	${}^{4}F_{7/2}$ $\leftarrow {}^{4}I_{15/2}$	Δ J = 4, Δ L = 3, Δ S = 0	E-I, R-II, $D-III$	0.001(1), 450.2
Er	505-530	² H _{11/2} \leftarrow ⁴ I _{15/2}	Δl =2, Δl =1, ΔS =1	E-III, R-III, D-II	0.001(1), 522.6
Er	540-560	${}^{4}S_{3/2}$ $\leftarrow {}^{4}I_{15/2}$	Δ J = 6, Δ L = 6, Δ S = 0	E-I, R-II, $D-III$	0.004(1), 546.3
Er	640-670	${}^{4}F_{9/2}$ $\leftarrow {}^{4}I_{15/2}$	Δl =3, ΔL =3, ΔS =0	E-III, R-III, D-II	0.03(1), 658.0
Er	780-820	$^{4}I_{9/2}$ \leftarrow $^{4}I_{15/2}$	Δl =3, ΔL =0, ΔS =0	E-III, R-III, D-II	0.03(1), 800.1
Er	960-1000	$\mathbf{1}_{11/2}$ \leftarrow $\mathbf{1}_{15/2}$	$\Delta I = 2$, $\Delta L = 0$, $\Delta S = 0$	E-I, R-II, $D-III$	0.03(1), 967.2
Er	1450–1550	$1_{13/2}$ \leftarrow $1_{15/2}$	$\Delta J = 1, \Delta L = 0, \Delta S = 0$	$E-I, R-I, D-II$	0.12(1), 1514.6
Tm	650-700	${}^3F_3 \leftarrow {}^3H_6$	ΔJ = 3, ΔL = 2, ΔS = 0	E-III, R-III, D-II	0.005(1), 685.3
Tm	760-805	$^3H_4 \leftarrow ^3H_6$	$\Delta I = 2$, $\Delta L = 0$, $\Delta S = 0$	E-I, R-II, $D-III$	$0.002(1)$, 794.7
Tm	1130-1230	3 H ₅ \leftarrow 3 H ₆	$\Delta J = 1, \Delta L = 0, \Delta S = 0$	E-I, R-I, D-II	0.047(1), 1213.5

Angew. Chem. Int. Ed. **2024**, 63, e202412521

6. MChD in Chiral Dysprosium Complexes

With: F. Pointillart, J. Crassous, B. Le Guennic (Rennes – France)

Inorg. Chem. **2023***, 62, 17583*

6. MChD in Chiral Dysprosium Complexes

Magnetic Field dependence of MChD

Inorg. Chem. **2023***, 62, 17583*

Optical Readout of Single-Molecule Magnetic Memories using Unpolarized Light

Requirements and analysis of the literature **RAQUIRA** - nequile proved by the completely inverse CD spectra recorded in ants and analysis r ac magnetic susceptibility measurements using an oscillating field of 3 Oe in zero applied dc field (Figures 2 and S12−S15).

interactions between highly anisotropic magnetic ions ($\mathcal{F}_{\mathcal{A}}$

Chiral Dy^{|||} SMM with onen hyster crystallized in the polar space group C² with one chiral D6h **Chiral Dy^{III} SMM with open hysteresis at** *T* **= 4.0 K**

See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

dysprosium salt and counterion. Note that and counterion $\mathcal{O}(n)$

loops for 1 in the temperature range of 2−20 K using a sweep range of 2−20 K using a sweep rate of 2−20 K

J. Am. Chem. Soc. 2021, 143, 10077−10082 200 Oe/s. Air-Stable Chiral Single-Molecule Magnets with Record Anisotropy Barrier Exceeding 1800 K

Zhenhua Zhu, $^\#$ Chen Zhao, $^\#$ Tingting Feng, Xiaodong Liu, Xu Ying, Xiao-Lei Li, Yi-Quan Zhang, * and Jinkui Tang*

 \sharp Am. Chem. So@2021, 143, 10077 two pseudolinear dependence of the relaxation time on

Synthesis and Crystallographic Analysis

Hydrogenated analogue of chiral DyIII SMM reported by Tang *et al.*

Stable and big single-crystals for orientationdependent measurements

Easy-axis almost aligned to *c* **crystallographic axis**

Static Magnetic Properties

Hysteresis cycles as a function of *T* **and** *B* **sweeping rate on oriented single crystals** *B***||***c*

Dynamic Magnetic Properties

Orbach, Raman and QTM relaxation mechanisms as a function of *T*

Ueff **ca. 1000 K**

$$
\tau^{-1} = \tau_{\text{QT}}^{-1} + CT^n + \tau_0^{-1} \exp\left(\frac{U_{eff}}{k_B}\right)
$$

MChD Properties

$$
\varDelta A(\nu, T, B) \propto \tan \ln \left(\frac{g_{||} \, \mathbf{B} \cos \theta}{2 \, k_B T} \right)
$$

$$
g_{||} = g_z = ca.20
$$

$$
g_{\perp} = g_{x,y} = ca.0
$$

J. Am. Chem. Soc. **2024***, 146*, 23624

MChD Properties

T dependence

B dependence

MChD Properties

J. Am. Chem. Soc. **2024***, 146*, 23624

J. Am. Chem. Soc. **2024***, 146*, 23624

Conclusions

ü **Magneto-Chiral Effects** are fascinating phenomena shown by **chiral molecules and materials** driven by symmetry arguments

- ü **MChD** is an intriguing **manifestation of light-matter interaction** of chiral magnetic systems **independent of the polarization state of light** and **proportional to the magnetization**
- ü **A rational chemical approach** can reveal the **microscopic parameter** that governs MChD **to enhance MChD signals intensity** and their observable temperatures **up to room temperature**
- ü **MChD can be used to optically readout magnetic memories without need of light polarization using visible light**

Acknowledgements

