

Magneto-Chiral Anisotropy: From Fundamentals to Potential Applications

Dr. Matteo ATZORI

CNRS Researcher matteo.atzori@lncmi.cnrs.fr

Laboratoire National des Champs Magnétiques Intenses

Grenoble - Toulouse

Outline

- Symmetry
- Ingredients for Magneto-Chiral Effects
- Electrical Magneto-Chiral Anisotropy
- Optical Magneto-Chiral Anisotropy
- Conclusions

Symmetry

- Continuous symmetries (Noether theorem):

Time-translation invariance, $t \rightarrow t + \Delta t \Leftrightarrow$ Energy conservation

Translational invariance, $r \rightarrow r + \Delta r \Leftrightarrow$ Momentum conservation

Rotational invariance, $\phi \rightarrow \phi + \Delta \phi \Leftrightarrow$ Angular momentum conservation

- Charge, Parity, Time reversal (CPT) symmetry:

Charge conjugation, **C**, $q \rightarrow -q$ (matter \rightarrow anti-matter)

Parity transformation, **P**, $r \rightarrow -r$ (mirror image)

Time-reversal, $T, t \rightarrow -t$ (play movie backwards)

CPT symmetry of a Magnetic Field B

- **CPT symmetry:**

Charge conjugation, $C, B \rightarrow -B$ (holes \rightarrow electrons)

Parity transformation, $P, B \rightarrow B$ (does not change)

Time reversal, **T**, **B** \rightarrow – **B** (electrons flowing in opposite directions)

Magnetic field is a time-odd pseudo-vector

Chirality

A system is called chiral when it exists in two non-superimposable forms (enantiomers) that can only be interconverted by a parity operation

Chirality breaks parity (or mirror) symmetry

CPT symmetry of a Physical Entities

		С	Ρ	Т
energy	Е	+	+	+
charge	q	-	+	+
polarization	Р	-	-	+
force	F	+	-	+
magnetization	М	-	+	-
light wavevector	k	+	-	-
electrical current	I	-	-	-
magnetic field	В	-	+	-
electric field	Ε	-	-	+
linear momentum	р	+	-	-
angular momentum	L	+	+	_

Magneto-Chiral Effects

Magneto-Chiral Anisotropy

Transport: Electrical or thermal conductivity, sound propagation, dielectric displacement (eMChA)

Optics: light absorption or emission for all energies of the electromagnetic spectrum (**oMChA**)

Chirality + Electric Current + Magnetic Field

$$R(\mathbf{B},\mathbf{I})^{D/L} = R_0 (1 + \beta B^2 + \Omega^{D/L} \mathbf{B} \cdot \mathbf{I})$$

$$\frac{R(\mathbf{B},\mathbf{I})^{D/L} - R(-\mathbf{B},\mathbf{I})^{D/L}}{R_0} = 2\Omega^{D/L}\mathbf{B}\cdot\mathbf{I}$$

G.L.J.A. Rikken, J. Fölling, P. Wyder, Phys. Rev. Lett. 2001, 87, 236602

G.L.J.A. Rikken, J. Fölling, P. Wyder, Phys. Rev. Lett. 2001, 87, 236602

G.L.J.A. Rikken and N. Avarvari, Phys. Rev. B 2019

eMChA in the chiral molecular conductors: (S,S)- or (R,R)-[DM-EDT-TTF]₂ClO₄

F. Pop, P. Auban-Senzier, E. Canadell, G. L. J. A. Rikken, N. Avarvari, Nat. Commun. 2014, 5, 3757

Summary of eMChA

	Material	⊿R/R [m²/TA]	remark
٦ *	Triglycine sulfate	3.10 ⁻⁵	dielectric
۳ ٦	Rochelle salt	3 . 10 ⁻⁶	dielectric
	Те	5.10 ⁻⁸	200 K, semiconduc.
	DM-TTF-ClO ₄	10 ⁻¹⁰	Room T
	WS ₂	10 ⁻¹⁰	Low T
	CrNb ₃ S ₆	10 ⁻¹²	Low T
	MnSi	2.10 ⁻¹³	Low T
	SW-Carbon Nano Tubes	10 ⁻¹⁴	Low T

Other chiral semi-conductor candidates:

Se, α -HgS, π -SnS, In₂Se₃, AlInSe₃, GaInSe₃, α -Al₂S₃, BaSi₂, CrSi₂, MoSi₂, WSi₂

* G. L. J. A. Rikken, N. Avarvari, Nat. Commun. 2022, 13, 3564 G. L. J. A. Rikken, N. Avarvari, Phys. Rev. B 2022, 106, 224307

Magneto-Chiral Effects in Optics

Interaction of Chiral Systems with Circularly Polarized Light

Natural Optical Activity: Natural Circular Dichroism (NCD)

Breaking of space-reversal symmetry by chirality leads to natural optical activity

Interaction of a system with Circularly Polarized Light and Magnetic Field

Magnetic Optical Activity: Magnetic Circular Dichroism (MCD)

Breaking of time-reversal symmetry by magnetic fields leads to magnetic optical activity

Optical Magneto-Chiral Anisotropy

Breaking both time-reversal and mirror symmetry leads to Magneto-Chiral Anisotropy

L. D. Barron, Chem. Soc. Rev. 1986, 15, 189

Light-Matter Interaction of Chiral Magnetized Systems

Magneto-Chiral Anisotropy: Magnetic Chiral Dichroism (MChD)

$\varepsilon(\lambda, \boldsymbol{k}, \boldsymbol{B}) = \varepsilon_0(\lambda) \pm \alpha^{d/l}(\lambda)\boldsymbol{k} \pm \beta(\lambda)\boldsymbol{B} + \gamma^{d/l}(\lambda)\boldsymbol{k} \cdot \boldsymbol{B}$

L. D. Barron & J. Vrbancich Molecular Physics 1984,51,715

Magneto-Chiral Dichroism (MChD)

The Light Absorption of Chiral Systems in Magnetic Fields is <u>enantioselective</u>

$$A = A_0 + \Delta A^{\Delta/\Lambda}$$

G. Rikken and E. Raupach, Nature 1997, 390, 493

Magneto-Chiral Dichroism (MChD)

A phenomenon difficult to detect: Experimental setup available at the LNCMI

Magneto-Chiral Dichroism

Potential Technological Application:

Optical read-out of magnetic data

Nature Physics 2015, 11, 7

Chiral Ln Complex

Chiral Helical Chains

 $[(\varDelta/\Lambda)-\mathbf{Mn}^{II}(\Lambda/\varDelta)-\mathbf{Cr}^{III}(\mathsf{C}_2\mathsf{O}_4)_3]^-$

G. Rikken & E. Raupach Nature **1997** C. Train, G. Rikken *et al. Nature Materials* **2008**

[**Co**^{II}(*hfac*)₂NITPhOMe]

R. Sessoli, A. Rogalev *et al.* Nature Physics **2015**

> Observed only in few systems

Lack of systematic investigations

M. Atzori et al., Chem.-Eur. J. 2020, 26, 9784-9791

MChD probed by light emission: Luminescence of a chiral Ln complex

✓ First experimental evidence of MChD

- A chiral Eu^{III} complex with chiral ligands selected from the chiral pool
- ✓ ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions probed

$$g_{MChD} = \frac{\left(I(B \uparrow\uparrow k) - I(B \downarrow\uparrow k)\right)}{\frac{1}{2}\left(I(B \uparrow\uparrow k) + I(B \downarrow\uparrow k)\right)B}$$

MChD probed by X-ray absorption: <u>Helical Co^{II}-radical Single-Chain Magnet</u>

- ✓ No signal for the Mn(II) derivative
- ✓ Strong signal for the Co(II) derivative
- ✓ Influence of the orbital moment on the intensity of MChD

Metal-radical 1D compounds obtained by spontaneous resolution

R. Sessoli et al., Nature Phys. 2015, 11, 69

MChD probed by Visible light absorption:

Enantiopure Chiral Ferromagnet obtained by enantioselective self-assembly

C. Train et al., Nature Mater. 2008, 7, 729

MChD probed by Visible light absorption:

Enantiopure Chiral Ferromagnet obtained by enantioselective self-assembly

C. Train et al., Nature Mater. 2008, 7, 729

My contribution to this Research Field

- 1. Understand the microscopic physico-chemical parameters governing MChD
- 2. Enhance the strength of MChD by chemical design
- 3. Increase the temperature at which this phenomenon is observed
- Prove that MChD is a technological relevant optical phenomenon

Overview of Investigated Systems

MChD investigation in:

Motivation: Increase MChD viable temperature by chemical design

Chiral Prussian Blue Analogue $[Cr^{III}(CN)_6][Mn^{II}((X)-pnH)(H_2O)] \cdot H_2O$

(X = S, R; pnH = 1,2-diaminopropane as chiral coligand)

2D-layered structure

K. Inoue et al. Angew. Chem. Int. Ed. 2003, 42, 4810

Magnetic Properties

Molecular ferrimagnet with a relatively high ordering temperature: 38 K

M. Atzori et al. J. Am. Chem. Soc. 2019, 141, 20022

Temperature dependence of absorption in the Visible

M. Atzori et al. J. Am. Chem. Soc. 2019, 141, 20022

Magneto-Chiral Optical Response: MChD

- MChD is observed despite the second coordination sphere chiral features of the magnetic centers
- Mirror images of MChD observed for the two enantiomers
- MChD signals arises from Mn^{II}, with a negligible orbital contribution to the magnetic moment but coordinated by the chiral ligand

Temperature dependence of MChD signals

MChD persists up to 43 K

M. Atzori et al. J. Am. Chem. Soc. 2019, 141, 20022

Temperature and Field dependence of MChD and Magnetization

MChD signals accurately follow the magnetization as a function of T and B

M. Atzori et al. J. Am. Chem. Soc. 2019, 141, 20022

M. Atzori et al. J. Mater. Chem. C 2022, 10, 13939-13945

Motivation: Correlate MChD to Magnetic Anisotropy

$[\mathbf{Mn}^{\mathbf{III}}(\text{cyclam})(\text{SO}_4)]\text{ClO}_4 \cdot \text{H}_2\text{O}$

(cyclam = 1,4,8,11-tetraazacyclotetradecane)

Structure made of 1D chiral chains by spontaneous resolution

S. Mossin et al. Dalton. Trans., **2004**, 632-639

With: R. Sessoli, F. Santanni, A. Caneschi (Florence – Italy)

Magnetic Properties

Magnetic behaviour of a canted antiferromagnet (weak ferromagnet)

S. Mossin et al. Dalton. Trans., 2004, 632-639

Temperature dependence of absorption in the Visible

M. Atzori et al. J. Am. Chem. Soc. 2020, 142, 13908-13916

Magneto-Chiral Optical Response: MChD

- Mirror MChD spectra observed for the two enantiomers
- MChD observed despite the second coordination sphere chiral features of the magnetic centers
- Strong signals arises from the *d*-*d* transitions associated to spin-orbit character

λ (nm)	Electronic Transition	∆A _{MChD} (cm ⁻¹ T ⁻¹)	A (cm⁻¹)	бмсhD	SOC character
432	${}^{5}E_{g} \leftarrow {}^{5}B_{1g}$	0.06(1)	1.5(5)	0.080(5)	λ²
467	${}^{3}A_{2g} \leftarrow {}^{5}B_{1g}$	0.03(1)	3.6(5)	0.017(5)	ο
481	${}^{3}E_{g} \leftarrow {}^{5}B_{1g}$	0.09(1)	1.4(5)	0.13(5)	4 λ²
530	${}^{5}B_{2g} \leftarrow {}^{5}B_{1g}$	0.21(1)	3.8(5)	0.11(5)	4 λ²
715	${}^{5}A_{1g} \leftarrow {}^{5}B_{1g}$	0	38.0(5)	0	0

M. Atzori et al. J. Am. Chem. Soc. 2020, 142, 13908-13916

Temperature and Field dependence of MChD and Magnetization

MChD signals follow the T and B dependence of M and reproduce the strong magnetic anisotropy of the system

M. Atzori et al. J. Am. Chem. Soc. 2020, 142, 13908-13916

Motivation: Understand the microscopic parameters governing MChD

 $[M^{II}(en)_3](NO_3)_2$ (en = ethylenediamine, $M = Ni^{II}$, Co^{II})

- ✓ Enantiopure A and ∆ complexes obtained by spontaneous resolution
- ✓ Large and optical transparent single crystals
- ✓ Isolated metal centers: only M^{II}
 d-d transitions probed
- ✓ Paramagnetic behavior
- ✓ Intense NCD at the metal center

 $[(\Lambda)-M^{II}(en)_3]^{2+}$

 $[Ni''(en)_3](NO_3)_2$

 $[(\Delta)-M^{II}(en)_3]^{2+}$

With: E. Hillard, P. Rosa (ICMCB, Univ. Bordeaux)

M. Atzori et al. Sci. Adv. 2021, 7, eabg2859

MChD data as a function of the temperature compared to optical absorption and Natural Circular Dichroism

- ✓ Linear variation of ΔA_{MChD} with **B** (low fields)
- ✓ Linear variation of ΔA_{MChD} with 1/T (Curie Law)

M. Atzori et al. Sci. Adv. 2021, 7, eabg2859

MChD measurements as a function of the crystal orientation

M. Atzori et al. Sci. Adv. 2021, 7, eabg2859

Experimental and Calculated MChD spectra

M. Atzori et al. Sci. Adv. 2021, 7, eabg2859

Motivation: Correlate MChD to the character of electronic transitions

$[[\mathbf{Yb}^{III}((X)-\mathbf{L})(hfac)_3](X = P, M)$

J. Am. Chem. Soc. 2021, 143, 2671–2675

With: F. Pointillart, J. Crassous, B. Le Guennic (Univ. Rennes)

First Observation of MChD through Light Absorption in Lanthanides

- One well-defined *f*-*f* electronic transition with $|\Delta J| = 1$
- Absorption spectrum split by Crystal Field and Vibronic Coupling
- ✓ Strong signal associated to to the high SOC, local chirality and MD character of the electronic transition

J. Am. Chem. Soc. 2021, 143, 2671–2675

Temperature and Field dependence of MChD

J. Am. Chem. Soc. 2021, 143, 2671–2675

Temperature dependence of MChD signals

A and C MChD terms and T dependence as predicted by MChD theory

J. Am. Chem. Soc. 2021, 143, 2671-2675

Theoretical calculations

Unpublished Results

MChD in chiral coordination polymers

Slow magnetic relaxation and CPL at room temperature

Angew. Chem. Int. Ed. 2022, e202215558K

With: F. Pointillart, J. Crassous, B. Le Guennic (Univ. Rennes)

Strong MChD, detectable up to room temperature

Angew. Chem. Int. Ed. 2022, e202215558K

Room temperature MChD

Low temperature MChD C term and room temperature MChD A term

Angew. Chem. Int. Ed. 2022, e202215558K

Magnetic Field dependence of MChD

Magneto-chiral optical data perfectly follow the magnetization

Angew. Chem. Int. Ed. 2022, e202215558K

Key-role of <u>magnetic-dipole allowed transitions</u>

unambiguously determined

With: X.-J. Kong (Xiamen – China)

J. Am. Chem. Soc. 2024, 146, 16389–16393

Selection rules for strong MChD-active electronic transitions

in lanthanides complexes

Fr-(S), Tm-(S)

With: F. Zinna, F. Pineider, L. Di Bari (University of Pisa)

Table 1: Assignment of the Er^{III} and Tm^{III} absorption peaks, transition properties, Richardson's classification^[38] and g_{MChD} values (T = 4.0 K and B = 1.0 T).

Compound	λ (nm)	Electronic transition	Transition properties	Richardson classification	g_{MChD} (T ⁻¹), λ (nm)
Er	475–495	⁴ F _{7/2} ← ⁴ I _{15/2}	$\Delta J = 4, \Delta L = 3, \Delta S = 0$	E-I, R-II, D-III	0.001(1), 450.2
Er	505-530	${}^{2}H_{11/2} \leftarrow {}^{4}I_{15/2}$	$\Delta J = 2, \Delta L = 1, \Delta S = 1$	E-111, R-111, D-11	0.001(1), 522.6
Er	540-560	⁴ S _{3/2} ← ⁴ I _{15/2}	$\Delta J = 6, \Delta L = 6, \Delta S = 0$	E-I, R-II, D-III	0.004(1), 546.3
Er	640–670	⁴ F _{9/2} ← ⁴ I _{15/2}	$\Delta J = 3, \Delta L = 3, \Delta S = 0$	E-111, R-111, D-11	0.03(1), 658.0
Er	780-820	${}^{4}I_{9/2} \leftarrow {}^{4}I_{15/2}$	$\Delta J = 3, \Delta L = 0, \Delta S = 0$	E-111, R-111, D-11	0.03(1), 800.1
Er	960-1000	${}^{4}I_{11/2} \leftarrow {}^{4}I_{15/2}$	$\Delta J = 2, \Delta L = 0, \Delta S = 0$	E-I, R-II, D-III	0.03(1), 967.2
Er	1450-1550	⁴ I _{13/2} ← ⁴ I _{15/2}	$\Delta J = 1, \Delta L = 0, \Delta S = 0$	E-I, R-I, D-II	0.12(1), 1514.6
Tm	650-700	³ F ₃ ← ³ H ₆	$\Delta J = 3, \Delta L = 2, \Delta S = 0$	E-III, R-III, D-II	0.005(1), 685.3
Tm	760-805	³ H₄← ³ H ₆	$\Delta J = 2, \Delta L = 0, \Delta S = 0$	E-I, R-II, D-III	0.002(1), 794.7
Tm	1130–1230	³ H₅← ³ H ₆	$\Delta J = 1, \Delta L = 0, \Delta S = 0$	E-I, R-I, D-II	0.047(1), 1213.5

Angew. Chem. Int. Ed. 2024, 63, e202412521

6. MChD in Chiral Dysprosium Complexes

With: F. Pointillart, J. Crassous, B. Le Guennic (Rennes – France)

Inorg. Chem. 2023, 62, 17583

6. MChD in Chiral Dysprosium Complexes

Magnetic Field dependence of MChD

Inorg. Chem. 2023, 62, 17583

Optical Readout of Single-Molecule Magnetic Memories using Unpolarized Light

Requirements and analysis of the literature

Chiral Dy^{III} SMM with open hysteresis at T = 4.0 K

Communication

Air-Stable Chiral Single-Molecule Magnets with Record Anisotropy Barrier Exceeding 1800 K

Zhenhua Zhu, $^{\#}$ Chen
 Zhao, $^{\#}$ Tingting Feng, Xiaodong Liu, Xu Ying, Xiao
-Lei Li, Yi-Quan Zhang, * and Jinkui Tang *

與 Am. Chem. So @ 2021, 143, 10077

Synthesis and Crystallographic Analysis

Hydrogenated analogue of chiral Dy^{III} SMM reported by Tang *et al.*

Stable and big single-crystals for orientationdependent measurements

Easy-axis almost aligned to c crystallographic axis

Static Magnetic Properties

Hysteresis cycles as a function of T and B sweeping rate on oriented single crystals B||c

Dynamic Magnetic Properties

Orbach, Raman and QTM relaxation mechanisms as a function of T

U_{eff} ca. 1000 K

$$\tau^{-1} = \tau_{\rm QT}^{-1} + CT^n + \tau_0^{-1} \exp^{\left(\frac{U_{eff}}{k_B}\right)}$$

MChD Properties

$$\Delta A(v, T, B) \propto \tanh\left(\frac{g_{||} B \cos\theta}{2 k_B T}\right)$$

$$g_{\parallel} = g_z = ca. 20$$
$$g_{\perp} = g_{x,y} = ca. 0$$

λ (nm)	Electronic transition	g _{мсhd} (Т ⁻¹)		
		1-(R)	1-(S)	
749.5	${}^{6}F_{3/2} \leftarrow {}^{6}H_{15/2}$	0.12(1)	0.11(1)	
828.8	⁶ F _{5/2} ← ⁶ H _{15/2}	0.08(1)	0.09(1)	
966.0	${}^{6}F_{9/2}/{}^{6}H_{7/2} \leftarrow {}^{6}H_{15/2}$	0.06(1)	0.07(1)	
985.7	${}^{6}F_{9/2}/{}^{6}H_{7/2} \leftarrow {}^{6}H_{15/2}$	0.05(1)	0.04(1)	

J. Am. Chem. Soc. 2024, 146, 23624

MChD Properties

T dependence

B dependence

MChD Properties

J. Am. Chem. Soc. 2024, 146, 23624

J. Am. Chem. Soc. **2024**, 146, 23624

Conclusions

Magneto-Chiral Effects are fascinating phenomena shown by chiral molecules and materials driven by symmetry arguments

- MChD is an intriguing manifestation of light-matter interaction of chiral magnetic systems independent of the polarization state of light and proportional to the magnetization
- A rational chemical approach can reveal the microscopic parameter that governs MChD to enhance MChD signals intensity and their observable temperatures up to room temperature
- MChD can be used to optically readout magnetic memories without need of light polarization using visible light

Acknowledgements

